Neural representations of compositional structures: representing and manipulating vector spaces with spiking neurons
نویسندگان
چکیده
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
منابع مشابه
Holographic reduced representations
Associative memories are conventionally used to represent data with very simple structure: sets of pairs of vectors. This paper describes a method for representing more complex compositional structure in distributed representations. The method uses circular convolution to associate items, which are represented by vectors. Arbitrary variable bindings, short sequences of various lengths, simple f...
متن کاملEvaluating Neural Word Representations in Tensor-Based Compositional Settings
We provide a comparative study between neural word representations and traditional vector spaces based on cooccurrence counts, in a number of compositional tasks. We use three different semantic spaces and implement seven tensor-based compositional models, which we then test (together with simpler additive and multiplicative approaches) in tasks involving verb disambiguation and sentence simila...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملDistributed representations for compositional semantics
The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches—meaning distributed representations that exploit co-occurrence statistics of large corpora—have proved popular and successful across a number of tasks. H...
متن کاملBuilding Production Systems with Realistic Spiking Neurons
We present a novel cognitive architecture built from realistic spiking neurons that exhibits basic production system capabilities. It uses Holographic Reduced Representations to encode structured information and the Neural Engineering Framework to create detailed neuro-biologically plausible networks of spiking neurons for storing and manipulating these representations. We demonstrate this syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Connect. Sci.
دوره 23 شماره
صفحات -
تاریخ انتشار 2011